Geometric structures on Lie groups with flat bi - invariant metric Vicente Cortés

نویسنده

  • Lars Schäfer
چکیده

Let L ⊂ V = R be a maximally isotropic subspace. It is shown that any simply connected Lie group with a bi-invariant flat pseudo-Riemannian metric of signature (k, l) is 2-step nilpotent and is defined by an element η ∈ Λ3L ⊂ Λ3V . If η is of type (3, 0)+(0, 3) with respect to a skew-symmetric endomorphism J with J2 = ǫId, then the Lie group L(η) is endowed with a left-invariant nearly Kähler structure if ǫ = −1 and with a left-invariant nearly para-Kähler structure if ǫ = +1. This construction exhausts all complete simply connected flat nearly (para-)Kähler manifolds. If η 6= 0 has rational coefficients with respect to some basis, then L(η) admits a lattice Γ, and the quotient Γ \ L(η) is a compact inhomogeneous nearly (para-)Kähler manifold. The first non-trivial example occurs in six dimensions. MSC(2000): 53C50, 53C15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Einstein structures on four-dimensional nutral Lie groups

When Einstein was thinking about the theory of general relativity based on the elimination of especial relativity constraints (especially the geometric relationship of space and time), he understood the first limitation of especial relativity is ignoring changes over time. Because in especial relativity, only the curvature of the space was considered. Therefore, tensor calculations should be to...

متن کامل

On the boundary behavior of left-invariant Hitchin and hypo flows

We investigate left-invariant Hitchin and hypo flows on 5-, 6and 7-dimensional Lie groups. They provide Riemannian cohomogeneity-one manifolds of one dimension higher with holonomy contained in SU(3), G2 and Spin(7), respectively, which are in general geodesically incomplete. Generalizing results of Conti, we prove that for large classes of solvable Lie groups G these manifolds cannot be comple...

متن کامل

Euler-Lagrange equations and geometric mechanics on Lie groups with potential

Abstract. Let G be a Banach Lie group modeled on the Banach space, possibly infinite dimensional, E. In this paper first we introduce Euler-Lagrange equations on the Lie group G with potential and right invariant metric. Euler-Lagrange equations are natural extensions of the geodesic equations on manifolds and Lie groups. In the second part, we study the geometry of the mechanical system of a r...

متن کامل

INEXTENSIBLE FLOWS OF CURVES IN LIE GROUPS

In this paper, we study inextensible ows in three dimensional Lie groups with a bi-invariant metric. The necessary and sucient conditions for inextensible curve ow are expressed as a partial dierential equation involving the curvatures. Also, we give some results for special cases of Lie groups.

متن کامل

Computing Bi-Invariant Pseudo-Metrics on Lie Groups for Consistent Statistics

In computational anatomy, organ’s shapes are often modeled as deformations of a reference shape, i.e., as elements of a Lie group. To analyze the variability of the human anatomy in this framework, we need to perform statistics on Lie groups. A Lie group is a manifold with a consistent group structure. Statistics on Riemannian manifolds have been well studied, but to use the statistical Riemann...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008